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A theoretical model of the viscosity of gases at subcritical densities is presented.
Up to now a suitable description of the viscosity of gases at these densities is
missing, except for very rarefied gases. In the introduction a short description is
given of what is already known about the viscosity of fluids, as far as needed to
understand the following sections. Then a new theoretical model is proposed,
based on conclusions drawn from the comparison of computer simulations and
experimental data taken over a large density range. The value of the volume of
close packing resulting from this comparison shows that at the critical density
the distance between the molecules is nearly equal to the effective range of the
intermolecular potential. Consequently, at subcritical densities the gas consists
of a collection of clusters of molecules. The momentum is then transported
by intracluster and intercluster transport. The theoretical model describes the
gradual transition from intercluster transport to intracluster transport as a
function of the density. The application of this model to some noble gas data
shows that the viscosity is described within the experimental accuracy. From
this application could be concluded that already at the lowest densities, clusters
are usually present.
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1. INTRODUCTION

Up to now the only suitable theory which is available to describe the vis-
cosity at high densities is the hard-sphere Enskog theory published in 1922
[1]. In 1970 Alder et al. [2] proved by means of computer simulations that



this theory is valid for hard spheres for densities up to twice the critical
density. For higher densities the simulation values increase gradually up to
nearly twice the theoretical value at the solidification density of the liquid.
A similar investigation on square-well molecules reported by Michels and
Trappeniers [3] confirmed this conclusion by extrapolation of the results.
According to the hard-sphere Enskog theory, the viscosity coefficient gEnskog
is given by

gEnskog=g0hs{(1/q)+0.8(b/V)+0.7614(b/V)2 q} (1)

where g0hs stands for the hard-sphere Chapman–Enskog formula

g0hs=(5/16)(pmkT)1/2/ps2 (2)

q is the radial distribution function at contact taken from the Carnahan–
Starling equation of state for hard spheres and expressed in b and V, b is
the Van der Waals covolume given in terms of the molar volume of close
packing V0, and V is the molar volume. The simulation data are given in
terms of the viscosity coefficient relative to the theoretical hard-sphere
Enskog value gEnskog as a function of V0/V.
For comparison with experimental data, the latter must also be given

relative to gEnskog and expressed in terms of the relative density V0/V. V0 is
now an adjustable parameter to bring the real molecules and the hard
spheres on the same measure. The value of V0 can be chosen such that the
high-density data fit to the simulation results in the density range near the
solidification density and that the intermediate-density data deviate a con-
stant value from them in the range between the critical density and twice
the critical density [4–8].
This deviation with a constant factor indicates that the right theoreti-

cal description of the viscosity in this range can be obtained by a change in
the density-independent part of gEnskog [5]. Since in the constant factor g0hs,
Eq. (2), the mass m and the temperature T are well-known, the collision
cross section

ps2=ccs (3)

is taken as a second adjustable parameter. This means that the effective
values for the diameter of the molecules are taken different for the excluded
volume expressed in V0 and for the collision cross section. This theoretical
description of the viscosity is called the special Enskog theory (SET). With
these two adjustable parameters, V0 and ccs, gSET describes the experimental
data in the intermediate-density range rather accurately [4–8]. However,
gSET does not describe the experimental viscosity at the subcritical densities.

16 van der Gulik and ten Seldam



At very low densities, the density-independent viscosity g0 is usually
described by the Chapman–Enskog formula

g0=(5/16)(pmkT)1/2/(ccs ·W*) (4)

where W* is the reduced collision integral. With increasing density, up to
the critical density, the viscosity shows an S-shaped deviation from g/gSET
[4–8]. Also, in the high-density range near the solidification density of the
fluid, the results differ from gSET. Recently van der Gulik [9] has shown
that, in this density range, Maxwell’s relaxation-time theory, given in his
second viscosity paper [10], can be applied.

2. THE VISCOSITY AT SUBCRITICAL DENSITIES

The values for the molar volume of close packing V0, obtained by the
fitting procedure mentioned above, are such that the molar volume at the
critical density is about 5V0 [4–8]. This means that at the critical density
the mean distance between the molecules is about 1.7 times the diameter of
the molecules. This distance corresponds very nearly to the effective range
of the intermolecular forces. At densities higher than the critical, the
attractive spheres overlap, and the attractive forces on the molecules com-
pensate each other; they act only as a background force and the molecules
can be handled as soft spheres. Therefore, at these densities the viscosity
can be described in terms of the special Enskog theory as mentioned above.
At densities somewhat lower than the critical, the mean distance

between the molecules becomes larger than the effective range of the inter-
molecular potential and we have clusters of molecules held together by the
intermolecular forces and empty spaces in between them. With decreases in
the density, the clusters become smaller and smaller. Thus, at densities lower
than the critical, a gas is mesoscopically homogeneous, but microscopically,
on the level of atoms, inhomogeneous, a mixture of clusters and void.
For the viscosity this means that, at subcritical densities, we have

to cope with two transport mechanisms, intracluster momentum transport
inside the clusters and intercluster momentum transport over the empty
spaces in between them. This two-mechanism model is an unavoidable
consequence of the existence of clusters. The contribution of the inter-
cluster transport decreases with increasing density, while the contribution
of the intracluster transport increases with increasing density, since the
clusters grow with the density.
According to modeling theory we have to look for the change in the

density dependence of one of the contributions F(V), say of the intracluster
transport, “F(V)/“(1/V). This contribution is determined by the amount
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and magnitude of the clusters, and these change during collisions. There-
fore, “F(V)/“(1/V) is taken to be proportional to both the contribution
F(V) of the intracluster transport and the contribution 1−F(V) of
intercluster transport

“F(V)/“(1/V)=rF(V){1−F(V)} (5)

where r is the rate of transition. The density is expressed in the molar
volume V for convenience. This equation is known as the logistic equation.
Its integration results in

F(V)=1/{1+exp(rO(V0/V)−dhP)} (6)

where dh is an integration constant, indicating the relative density, where
F=1

2 . V is reduced with V0 for convenience.
The gradual transition from the mean-free path mechanism at very

low density to the hard-sphere Enskog mechanism at the critical density
is demonstrated by the S-shaped curves in Figs. 1–3. The temperature
dependence reflects mainly the temperature dependence of the reduced
collision integral W* in the Chapman–Enskog part. Therefore, we assume
that the momentum transport between the clusters is of the mean-free path

Fig. 1. Relative viscosity g/gSET of neon as a function of the relative
density V0/V. Curves represent the theoretical model. Experimental data:
(+) 298 K, (n) 323 K, (× ) 348 K [11]; (i) 298 K [12].
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Fig. 2. Relative viscosity g/gSET of argon as a function of the relative
density V0/V. Curves represent the theoretical model. Experimental data:
(N) 173 K, (J) 223 K, (I) 298 K [13]; (f) 173 K, (h) 223 K, (g) 270 K,
(e) 298 K [14]; (j) 273 K, (+) 298 K, (n) 323 K, (× ) 348 K [15].

Fig. 3. Relative viscosity g/gSET of krypton as a function of the relative
density V0/V. Curves represent the theoretical model. Experimental data:
(+) 298 K, (n) 323 K, (×) 348 K [16]; (j) 298 K, (i) 348 K [17].
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type and is described by gSET/W*. A good choice for the momentum
transport within the clusters appears to be given by gSET, so that

g=F(gSET/W*)+(1−F) gSET (7)

or

g=[(F/W*)+(1−F)] gSET (8)

g=[1+((1/W*)−1) F] gSET (9)

and

g=[1−(1−(1/W*))/{1+exp(rO(V0/V)−dhP)}] gSET (10)

The term [1−(1/W*)] is the distance between the reduced Chapman–
Enskog viscosity g0/gSET and gSET/gSET=1, the amplitude A of the above
mentioned S-shaped curve:

g=[1−A/{1+exp(rO(V0/V)−dhP)}] gSET (11)

From a different point of view the logistic function describes the extinction
of this amplitude A=1−(1/W*) and therewith the extinction of the
influence of the attractive forces with the density, with the rate r at relative
density dh.
So we end up with a theoretical description of the viscosity for the

density range up to nearly twice the critical density with five parameters,
V0 and ccs in gSET and A, r, and dh in F.

3. APPLICATION TO SOME NOBLE GASES

This model is applied to the viscosity coefficients of neon [11, 12],
argon [13–15], and krypton [16, 17], for which suitable data are available.
For neon and argon the program is applied on data up to densities of 1.9
times the critical density and for krypton on data up to twice the critical
density. The choice of the data has been somewhat arbitrary: sometimes
data at the same temperature were combined, and sometimes data were
taken separately because of systematical deviations. The data of van den
Berg [17] have been given a higher weight than the corresponding data of
Trappeniers et al. [16] because of their very high accuracy.
First, a five-parameter least-squares program was applied on these

data. The results showed that the model describes the data amply within
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the uncertainty of the data; however, the values of the parameters are not
well defined, a range of values being possible within the limits set by the
accuracy of the data. Therefore, the model was applied in two steps: first,
V0 and ccs were determined from the intermediate density data and then A,
r, and dh were determined with a three-parameter least-squares program
over the full density range. The result is presented in Table I. The standard
deviation (SD) is the root of the mean square deviation in parts per thou-
sand, and n is the number of data used. Also, the source of the data is
indicated. The results show a decrease with temperature for the volume of
close packing V0, the collision cross section ccs, and the amplitude A, and
an increase with temperature for the rate r, while the integration constant
dh is more or less constant.
Table II shows some results derived from these parameter values. With

A=1−(1/W*) the values of the reduced collision integral W* are cal-
culated. They are of the right magnitude and show the expected decrease
with increasing temperature. Values for the diameter sccs of the atoms are

Table I. Temperature−Dependent Model Parameters of Some Noble Gases

T V0 ccs
(K) (m3 ·Mmol−1) (10−20 m2) A r dh SD n

Neon

298.15 5.785 20.38 0.0241 37.11 0.0712 0.9 37 30 [11], 7 [12]
323.15 5.69 20.22 0.0177 48.07 0.0734 0.8 28 [11]
348.15 5.60 20.04 0.0155 50.49 0.0771 0.7 25 [11]

Argon

173.15 15.76 37.97 0.2720 21.71 0.1076 6.8 21 [13]
173.15 15.88 37.97 0.2795 20.86 0.1001 7.5 40 [14]
223.15 14.97 36.39 0.2539 19.94 0.0735 0.9 16 [13]
223.15 14.97 36.39 0.2315 24.14 0.0781 4.8 18 [14]
270.15 14.15 35.27 0.2151 20.58 0.0591 2.6 38 [14]
273.15 14.10 35.20 0.2064 23.81 0.0670 1.5 6 [15]
298.15 13.84 34.79 0.2116 20.51 0.0523 0.5 10 [13]
298.15 13.84 34.79 0.1767 27.86 0.0617 4.5 20 [14]
298.15 13.84 34.79 0.1821 24.90 0.0680 2.5 23 [15]
323.15 13.58 34.48 0.1621 26.74 0.0679 2.7 24 [15]
348.15 13.39 34.33 0.1435 27.58 0.0644 2.2 25 [15]

Krypton

298.15 18.04 40.70 0.2764 21.30 0.0790 2.9 62 27 [16], 35 [17]
323.15 17.815 40.70 0.2466 21.54 0.0730 2.6 27 [16]
348.15 17.52 40.31 0.2405 21.74 0.0662 2.4 61 25 [16], 36 [17]
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Table II. Values Derived from the Model Parameters of the Noble Gases

T (K) W* sccs (nm) sV0 (nm) Ratio

Neon

298.15 1.025 0.255 0.239 1.067
323.15 1.018 0.254 0.237 1.069
348.15 1.016 0.253 0.236 1.070

Argon

173.15 1.374 0.348 0.333 1.043 [13]
173.15 1.388 0.348 0.334 1.041 [14]
223.15 1.340 0.340 0.328 1.039 [13]
223.15 1.301 0.340 0.328 1.039 [14]
270.15 1.274 0.335 0.321 1.042 [14]
273.15 1.260 0.335 0.321 1.042 [15]
298.15 1.268 0.333 0.319 1.043 [13]
298.15 1.215 0.333 0.319 1.043 [14]
298.15 1.223 0.333 0.319 1.043 [15]
323.15 1.193 0.331 0.317 1.045 [15]
348.15 1.168 0.331 0.316 1.047 [15]

Krypton

298.15 1.382 0.360 0.349 1.032
323.15 1.327 0.360 0.347 1.037
348.15 1.317 0.358 0.345 1.038

calculated from the collision cross section ccs=ps2 and for the effective
excluded-volume diameters sV0 from the molar volumes of close packing
V0=NAs3/`2. The ratio of both radii and therefore a measure for the
softness of the spheres are given in column 5 of Table II. In the case of
argon the source of the data is also indicated.
Figures 1–3 show the viscosity reduced with the value of gSET as a

function of the reduced density V0/V and also the theoretical curves cal-
culated with the parameters presented in Table I. These curves are plotted
down from the negative densities V0/V=−0.1 to show their complete
course. Figures 4–6 show the experimental data, the theoretical curves, and
the deviations of these data from the theoretical values in parts per thousand.
For neon (Fig. 4), the agreement is in general within 2 parts in thousand.
For argon (Fig. 5), the agreement is mostly within 5 parts per 1000 with the
exception of the data of Haynes [14]. The data taken at 173 K were worse;
they have a spread of 15 parts per 1000 and are, therefore, omitted from
the deviation plot. The deviations of the krypton data (Fig. 6) show the
systematic difference between the data of Trappeniers et al. [16] and those
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Fig. 4. Viscosity of neon as a function of density and deviations from
the theoretical model in parts per thousand. Curves represent the theore-
tical model. Experimental data: (+) 298 K, (n) 323 K, (× ) 348 K [11];
(i) 298 K [12].

of van den Berg [17]. For the data of Trappeniers et al. alone, a result like
that of neon would be obtained.

4. INTERPRETATION AND CONCLUSIONS

The main conclusion from the application of this theoretical model to
some noble gases is that the model describes the viscosity coefficient amply
within the experimental uncertainty of the data, the agreement is mostly
within a few parts per thousand. Consequently, many accurate data over a
wide density range are needed to determine the values of the parameters
accurately. A second conclusion, drawn from Figs. 1–3, is, that usually
even at the lowest densities, clusters are present. Only at temperatures high
above the critical temperature, as, for instance, for neon with a critical
temperature of 44.4 K, the condition of the Chapman–Enskog theory that
only binary collisions occur is more or less fulfilled, as Fig. 1 shows. This
means that the rarefied-gas viscosity is not completely described by the
Chapman–Enskog theory, which assumes single molecules, and that the
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Fig. 5. Viscosity of argon as a function of density and deviations from
the theoretical model in parts per thousand. Curves represent the theore-
tical model. Experimental data: (N) 173 K, (J) 223 K, (I) 298 K [13];
(f) 173 K, (h) 223 K, (g) 270 K, (e) 298 K [14]; (j) 273 K, (+) 298 K,
(n) 323 K, (×) 348 K [15].

values for W* mentioned in Table II do not correspond to those derived
from experimental values of g0 but are a little bit larger. This can be
important for the calculation of the intermolecular potential from low-
density viscosity values. Also, the rarefied-gas viscosity is not independent
of the density, as is also known from the Rainwater–Friend theory.
A comparison should be made between this theory and the present model
for very accurate data.
In contrast with what we have supposed in earlier publications, the

collision cross section appears to decrease with the temperature also for
noble gases, as for polyatomic molecules like methane [6, 7] and carbon
dioxide [18], for which a temperature-dependent form factor is included in
ccs. It must be stressed that ccs contains only the repulsive part of the
intermolecular potential, the influence of the attractive forces is discounted
in W*. Also, the value of V0, and thereby of the excluded volume, decreases
slightly with increasing temperature due to the fact that the molecules are
not really hard; at high temperatures the molecules move faster, collide with
greater impact, and penetrate each other further than at low temperatures.

24 van der Gulik and ten Seldam



Fig. 6. Viscosity of krypton as a function of density and deviations
from the theoretical model in parts per thousand. Curves represent the
theoretical model. Experimental data: (+) 298 K, (n) 323 K, (×) 348 K
[16]; (j) 298 K, (i) 348 K [17].

Of course, also the corresponding diameter decreases smoothly with the
temperature, as shown in Table II; in this respect the atoms behave as soft
spheres. It can easily be understood that this excluded-volume diameter is a
bit smaller than the collision cross-section diameter, since the ‘‘target’’ is hit
or not and the corresponding diameter has nothing to do with penetration.
The fact that r increases with temperature includes that r eventually

becomes negative at low temperatures. The result is a negative slope of g as
function of the density, as is found experimentally for the viscosity of
vapors far below the critical temperature. It means that the relative contri-
bution of intercluster momentum transport increases with the density. This
occurs when the magnitude of the vapor clusters is in equilibrium with the
temperature and does not depend on the density. In that case with increas-
ing density only the number of vapor clusters increases. As soon as the
density becomes so high that the clusters tend to grow in magnitude, con-
densation occurs.
In general, the figures show that the theoretical model describes all

experimental data within their experimental accuracy up to roughly twice
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the critical density, while at higher densities the deviations increase very
fast with the density, a very satisfactory result.
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